HOMEWORK 5

Problem 1 Prove that for $\operatorname{Re} s>1$,

$$
\zeta(s)=s \int_{1}^{\infty} \frac{[x]}{x^{s+1}} d x
$$

where $[x]$ stands for the integer part of x.
Problem 2 Prove that for $\operatorname{Re} s>1$,

$$
\frac{1}{\zeta(s)}=s \int_{1}^{\infty} \frac{M(x)}{x^{s+1}} d x
$$

where

$$
M(x)=\sum_{1 \leq n \leq x} \mu(n),
$$

and $\mu(n)$ is the Möbius function.
Problem 3 Prove that for Re $s>1$,

$$
L(s, \chi)=s \int_{1}^{\infty} \frac{A(x)}{x^{s+1}} d x
$$

where

$$
A(x)=\sum_{1 \leq n \leq x} \chi(n) .
$$

Problem 4 Suppose that the series $\sum_{n=1}^{\infty} a_{n}$ converges with sum A, and let $A(x)=\sum_{1 \leq n \leq x} a_{n}$. Prove that the Dirichlet series

$$
F(s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}
$$

converges for $\operatorname{Re} s>0$ and that

$$
F(s)=A-s \int_{1}^{\infty} \frac{R(x)}{x^{s+1}} d x
$$

where $R(x)=A-A(x)$. (Hint to Problems 1-4: Use Abel's summation).
Problem 5 Function $f: \mathbb{N} \rightarrow \mathbb{C}$ is called completely multiplicative, if $f(m n)=$ $f(m) f(n)$ for all $m, n \in \mathbb{N}$. Suppose that the Dirichlet series $F(s)=$ $\sum_{n=1}^{\infty} \frac{f(n)}{n^{s}}$ converges absolutely for $\operatorname{Re} s>\sigma_{0}$. Prove that for $\operatorname{Re} s>$ σ_{0} we have

$$
\frac{F^{\prime}(s)}{F(s)}=\sum_{n=1}^{\infty} \frac{f(n) \Lambda(n)}{n^{s}},
$$

where prime stands for the derivative, and $\Lambda(n)$ is von Mangoldt function.

